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Abstract 
We shall obtain the exact formulas for the number of representations by primitive binury qvadratic forms with 

discriminants -128 and -140. 
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I. Introduction 

Let   22; cybxyaxyxff   be a 

primitive integral positive-definite binary quadratic 

form. The positive integer n is said to be represented 

by the form f if there exists integers x and y such that 
22 cybxyaxn  . 

The number of representations of n by the form f 

is denoted by  fnr ; . It is well known how to find 

the formulas for the number of representations of a 

positive integer by the positive-definite quadratic 

form which belong to one-class genera. Some papers 

are   devoted to the case of multy-class genera. Using 

the simple theta functions Peterson [1] obtained 

formulas for  fnr ;  in the case of the binary forms 

with discriminant  44. These forms and some other 

ones were considered by P.Kaplan and k.S.Williams 

[2]. Their proof for odd number n based on Dirichlet 

theorem. In the same work in case of forms with 

discriminants equal to 80, 128 and 140 

application of this theorem did not succeed and 

formulas only for even n have been received. In [3] 

we considered two binary forms 
22 723 yxyx   

and 
22 723 yxyx    of discriminant  80 and 

two binary forms 
22 1123 yxyx   and 

22 1123 yxyx   of discriminant  128. Using 

Siegel’s theorem [4] we obtained exact formulas for 

the number of representations by these forms. But in 

case of the other primitive forms with discriminants  

128 and  140 we have to use the theory of modular 

forms. In this paper by means of the theory of 

modular forms the formulas for the number of  

representations of a positive integer  by the forms 
22

1 32 yxf  , 
22

2 944 yxyxf  , 

22

3 35 yxf  , 
22

4 924 yxyxf  , 

22

5 924 yxyxf  , 
22

6 75 yxf  , 

22

7 1223 yxyxf  , 

22

8 1223 yxyxf   are obtained.  

 

II. Basic results 
In order to use the theory of modular forms in 

case of the binary forms ( 1, 2, 8)kf k   ) it is 

necessary to construct the cusp form  X  which is 

so-called remainder member. For this purpose we use 

the modular properties of the generalized theta –

function defined in [5]  as follows: 
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Here A is an integral matrix of  f, 
SZx , g and 

h are the special vectors with respect to the form 

 xpf ,  is a spherical function of the  -th order 

corresponding to f ; N is a step of the form  f. 

  In particular, if f is a binary form, g and h are 

zero vectors and   10 xp , then  

   ffpgh ;,; 0   , 

 ;r n f  is a Fourier coefficient of   ; f  . 

We assume, that 

   ffp ghgh ;,; 0   ,  where 10 p . 

 fE ;  is the Eisenstein series corresponding to  

f  (see, e.g., [3]). 

By means of the theory of modular forms we 

prove the following theorems. 

Theorem 1. 

Let 
22

1 32 yxf  ,  

22

2 944 yxyxf  , 









0

16

 
g ,  
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









2

0
h , 

22 84 yxf  . Then we have 

     ffEf gh ;
2

1
;

2

1
; 11   , 

     ffEf gh ;
2

1
;

2

1
; 12   . 

Theorem 2. 

Let 
22

3 35 yxf  ,  

22

4 924 yxyxf   

22

5 924 yxyxf  , 











0

70

 
g , 










0

70

 
h . 

Then we have 

     433 ;
3

2
;

2

1
; ffEf gh    

       4354 ;
3

1
;

2

1
;; ffEff gh    

Theorem 3. 

Let 
22

6 75 yxf  , 
22

7 1223 yxyxf  , 

22

8 1223 yxyyf  , 









70

0 
g , 










0

70

 
h . 

Then we have 

     766 ;
3

2
;

2

1
; ffEf gh   , 

       7687 ;
3

1
;

2

1
;; ffEff gh  

Equating the Fourier coefficients  in both sides of the 

identities from theorems 1-3 we get the following 

theorems: 

Theorem 4 

Let un 2 ,   12, u , 
22

1 32 yxf   

22

2 944 yxyxf  . Then 

    






 


u

kk fnfnr





;
2

;  for 

 8mod1u ,  

 






 


u 

2
2  for 2 ,  8mod1u   and for 

3 ,   8mod3,1u ,  

0  otherwise,  

where 2,1k ; 






 



2
 is  Jakobi  

symbol and      
2 2

1

8
     2†

1
; 1    1

2

k y

k

n x y
x

n f


 

  

. 

Theorem 5. 

Let un  752 ,   110, u , 
2 2

3 35f x y  , 

22

4 924 yxyxf  , 
2 2

5 4 2 9f x xy y    

Then     

     
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1

5
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6

1
;

u
fnr k
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
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

u

kfn
u







;

35

7
1  

For 0 , 

   


















1

5
11

2

1 u
 

   






 
















u

u







35

7
1  for 2 , 0 , 

0  for 2†, 

Where 5,4,3k ; 








5

u
, 









7

u
, 







 

v

35
 are 

Jacobi symbols and  

   
2 2

3

9
           2†

2
;      1

3

y

n x xy y
x

n f
  

   

     
2 2

4 5

9
           2†

1
; ;      1

3

y

n x xy y
x

n f v n f
  

    . 

Theorem 5. 

 Let un  752 ,   110, u , 
2 2

6 5 7f x y 

, 
22

7 1223 yxyxf  , 

22

8 1223 yxyxf  . Then 

     

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 for 0 , 

   















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
1

5
11

2

1 u
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   






 
















u v

u



 35

7
1  for 2 , 0  

0  for 2†,  

where 8,7,6k ; 








5

u
, 









7

u
, 







 

v

35
 are 

Jacobi symbols and 

   
2 2

6

3 3
           2†

2
;      1

3

x

n x xy y
y

n f
  

   , 

     
2 2

7 8

3 3
           2†

1
; ;      1

3

x

n x xy y
y

n f v n f
  

   . 
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